
CALIFORNIA INSTITUTE OF TECHNOLOGY

Division of Physics, Mathematics, and Astronomy;

FINAL TECHNICAL REPORT

for

NASA-Ames Agreement NAG2-1068

J. Zmuidzinas, Principal Investigator

Airborne Submillimeter Spectroscopy

Contents

1 Introduction

2 Coherent Detection

3 SIS Receivers

4 Development of NbTiN SIS mixers

4.1 Quasioptical mixers ................................

4.2 Normal metal tuning circuits ...........................

4.3 NbN films and SIS mixer measurements ....................

4.4 NbTiN Films and SIS Tuning Circuits .....................

4.5 SIS mixers with NbTiN ground planes .....................

4.6 FTS measurements of all-NbTiN devices ....................

4.7 SIS mixers with NbTiN/MgO/NbTiN and Nb/A1N/NbTiN junctions ....

5 Conclusions

6 References

7 List of Publications

1

2

3

3

4

5

S

9

9

10

11

11

15



1 Introduction

This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Air-

borne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through

January 31, 1998. The grant was funded by the NASA airborne astronomy program, during

a period of time after the Kuiper Airborne Observatory was no longer operational. Instead.

this funding program was intended to help develop instrument concepts and technology for

the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA,

which is funded by NASA and is now being carried out by a consortium lead by USRA (Uni-

versities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter

telescope. The purpose of our grant was to fund the ongoing development of sensitive hetero-

dyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting

(SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne

instrument for SOFIA. Our proposal was successful [1], and we are now continuing our air-

borne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068

grant was to continue the analysis of astronomical data collected with an earlier instrument

which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument

and the astronomical studies which were carried out with it were supported primarily under

another grant, NAG2-744, which extended over October 1, 1991 through January 31, 1997.

For a complete description of the astronomical data and its analysis, we refer the reader

to the final technical report for NAG2-744, which was submitted to NASA on December 1.

1997. Here we report on the SIS detector development effort for SOFIA carried out under

NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a

new superconducting material, niobium titanium nitride (NbTiN), which promises to deliver

dramatic improvements in sensitivity in the 700-1200 GHz frequency range.

In section 2, we review the general motivation for using coherent detection in the submil-

limeter and far-infrared. The present status of Superconductor-Insulator-Superconductor

(SIS) tunnel junction receivers is briefly discussed in section 3, and is followed by a thorough

technical discussion of our work on NbTiN SIS mixers in section 4.

2 Coherent Detection

Technology for sensitive coherent detection in the submillimeter and far-infrared continues

to be developed rapidly, driven by the needs of a number of astronomical projects includ-

ing the next generation NASA airborne observatory, SOFIA (Stratospheric Observatory for

Infrared Astronomy). See reference [2] for a recent general review of the techniques for coher-

ent detection in the submillimeter band. A coherent detection system is essentially a radio

receiver: the weak astronomical signal is combined with a more powerful monochromatic "lo-

cal oscillator" signal in a sensitive detector, which produces microwave beat frequencies that



canbe spectrally analyzedusing conventionalmicrowaveelectronics. Coherentdetection is
especiallyusefulfor high resolution spectroscopy,whereresolutionsbetter than 1 km/s are
necessaryfor resolving doppler-broadenedspectral lines from galactic objects. Suchhigh
spectral resolution (A/SA ,-_ 106) is very difficult to obtain using optical filters preceeding

direct detectors. However, quantum mechanics imposes an ultimate limit on the sensitiv-

itv of coherent systems. This "quantum limit" can exceed the photon fluctuations of the

background radiation, which sets the fundamental sensitivity limit for direct detection, par-

ticularly in the cases that the thermal background is very low (as occurs in the Wien limit

hr, >> leT). For SOFIA, which will have a total emissivity (telescope plus atmosphere)

around 30%, and a physical temperature around 250 K, coherent detection is expected to be

competitive with direct detection well into the far-infrared region, A _ 150#m.

Two types of detectors (or "mixers") are being developed for the far-infrared wave-

length region, both of which use superconductors. The first type of detector is based on

SIS (superconductor-insulator-superconductor) tunnel junctions. SIS devices are well un-

derstood, and in theory can reach the quantum limit of sensitivity. In practice, excellent

performance is achieved up to 700 GHz using niobium devices, and the measured receiver sen-

sitivities are close to the fundamental quantum limit (i.e. within factors of a few). The work

supported by this grant (NAG2-1068) has shown that similar performance up to 1200 GHz

should be possible using SIS devices made using a new superconducting material - niobium

titanium nitride (NbTiN). For yet higher frequencies, a newer type of device has recently

been developed - the superconducting hot electron bolometer (HEB). The experimental re-

suits to date have been very encouraging, with low-noise mixing demonstrated up to 2.500

GHz: however, the measured sensitivities are still far from the quantum limit. It therefore

appears to be important to push the frequency limit of the more sensitive SIS technology as

high as possible.

3 SIS Receivers

The development of fabrication techniques for producing small area, high current density

superconductor-insulator-superconductor (SIS) tunnel junctions integrated with thin-film

microstrip tuning circuits has resulted in a dramatic improvement in the sensitivity of het-

erodyne receivers in the 100-1000 GHz range[2]. At present, the most commonly used super-

conducting material is niobium (Nb), which has a transition temperature of 9.2 K. In theory,

the sensitivity of SIS mixers can approach the quantum limit TN = hv,/kB; in practice, the

best results below the T00 GHz gap frequency of niobium are within a factor of 2-5 of this

limit. However, the noise of sensitive receivers is actually often dominated by other factors

such as optical losses, thermal noise, and IF amplifier noise, rather than by the noise in the

SIS mixer itself. The situation changes dramatically above 700 GHz, at which point the

niobium tuning circuits become very lossy since the photon energy is large enough to break



Cooperelectron pairs (hi/ > 2_). At these frequencies,the performanceis limited bv the
circuit losses,evenwhenhigh conductivity normal metalssuchasaluminum are usedfor the
tuning circuit [3, 4, 5, 6] in place of niobium. Niobium titanium nitride (NbTiN) appears to

be a good superconducting material for higher frequencies, since NbTiN has a larger critical

temperature (16 t() and gap frequency (1200 GHz) than niobium, and high quality NbTiN

films can be fabricated. Under this grant, we have made initial SIS mixer measurements

using tuning circuits made with superconducting NbTiN films and tunnel junctions.

quartz lens
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two-junction
tuning circuit
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i microstrip li!

transformer
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Figure i: Our quasi-optical mixer design. Left: the optical configuration uses an

antireflection-coated hyperhemispherical silicon lens to focus the submillimeter radiation

onto the SIS chip; Right: the SIS chip consists of a twin slot antenna, a microstrip trans-

former, and a tuning circuit which uses two SIS junctions.

4 Development of NbTiN SIS mixers

4.1 Quasioptical mixers

The measurements were performed using our standard quasioptical mixer configuration

(Fig. 1). In this design, a planar twin slot antenna[7] is lithographically fabricated along

with the SIS junctions on a silicon substrate, and then this integrated "chip" is placed

behind a hyperhemispherical lens which focuses the incoming radiation onto the antenna.

Because the dielectric constant of silicon is fairly high (e, = 11.5), the twin slot antenna

has a forward efficiency of 90%. The reflection loss from the surface of the silicon lens is

eliminated using a quarter-wavelength anti-reflection coating [8] of alumina-loaded epoxy,

which has an effective dielectric of about er = 4. The coating is cut to the correct thick-

ness on an optical diamond-turning machine. This method results in smooth, very rugged,



cryogenically cycleablecoatingswhich have excellentoptical performance.
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Figure 2: The equivalent circuit for our SIS mixer design. The junctions can be idealized

as simple parallel RC circuits. The physical spacing between the junctions determines the

effective tuning inductance k. The slot antennas and microstrip transformers can be con-

sidered to be generators with a complex source impedance Zs; the two generators are 180 °

out of phase clue to the symmetry of the coupling to tile twin-slot antenna.

One of the crucial aspects of our SIS mixer design is the tuning circuit which resonates the

SIS junction capacitance and matches the junction impedance to the slot antenna. We use a

two-junction tuning circuit[9], in which the two junctions are separated by a section of mi-

crostrip line which serves as a tuning inductance (Fig. 2). This design has been extensively

characterized using niobium devices[10]. Fourier transform spectrometer (FTS) measure-

ments of the direct-detection frequency response of the niobium devices agree quite well with

our circuit simulations. The circuit simulator[ll] includes the complex frequency-dependent

impedance of the slot antenna as well as the impedance and propagation characteristics of

the superconducting microstrip lines used in the transformers and tuning inductance. The

microstrip model[7] includes dispersion and fringing effects[12] and incorporates the surface

impedance as calculated using the Mattis-Bardeen theory[13] in the local limit.

4.2 Normal metal tuning circuits

As shown in Fig. 3, a microstrip line made with normal-metal aluminum films has sub-

stantially less loss than a corresponding niobium line at frequencies above 800 GHz. SIS

mixers using aluminum microstrip circuits with niobium tunnel junctions have in fact been

demonstrated at frequencies over 1 THz[3, 4, 5, 6] with noise temperatures somewhat below

1000 K (DSB). Although these mixers are substantially less sensitive than SIS mixers below

700 GHz, they are nonetheless the most sensitive heterodyne devices demonstrated to date
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Figure 3: Calculated losses for thin-film microstrip transmission lines used in SIS mixer

tuning circuits for various conductors, including NbTiN. The microstrip width is 5 #m, and

the dielectric is 400 nm SiO (e = 5.6).

at 1 THz. Not surprisingly, detailed analyses of the mixer performance[4, 5] indicate that

the tuning circuit loss is the primary limitation on the performance.

Figure 4 shows the results of Fourier transform spectrometer measurements on a set

of SIS devices with aluminum microstrip tuning circuits.{4] These results demonstrate that

the tuning circuits have very' broad resonances, around 400 GHz wide, which indicates a

rather low Q-factor due to the loss in the aluminum lines. Furthermore, the vertical scale

in these plots gives the calculated RF coupling efficiency. At 1 THz, the coupling efficiency

is only 20%, indicating that 80% of the signal power received by the twin-slot antenna and

injected into the microstrip circuit is dissipated instead of being detected by the tunnel

junction. Clearly, the performance of SIS mixers at 1 THz could be improved dramatically

if a low-loss conductor were available.

4.3 NbN films and SiS mixer measurements

Niobium Nitride (NbN) is a very well known superconductor. NbN films can be fabricated

in a variety of ways, the most common method being reactive magnetron sputtering, and the

resulting films display a large range in characteristics[14, 15, 16, 17, 1S, 19]. In particular,

the substrate temperature during deposition has a strong influence on the quality of NbN

films, as characterized by the normal-state resistivity p, or the magnetic penetration depth

A. Normal-state resistivities as low as 25 #fi cm have been obtained, using heated (--, 350 C)

silicon substrates coated with SiC buffer layers[17]. More typically, resistivities of 60 #_ cm

are obtained on heated MgO substrates. For unheated substrates, resitivities over 140 #t] cm

are common, although lower values have been obtained in some cases[18]. Low-resistivity
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Figure 4: Measured and calculated frequency response for a series of SIS mixer chips fabri-

cated with normal metal aluminum tuning circuits. Since we cannot calibrate the absolute

response, the Fourier transform spectrometer (FTS) measurements are scaled (vertically)

to match the circuit simulations. The "notches" in the response above 1 THz are due to

absorption by residual water vapor in our nitrogen-flushed system.

films most often show a decreasing resistance with temperature, while high-resistivity films

show a constant or even slightly increasing resistance with temperature. These variations in

film properties are associated with variations in the microstructure of the films.

A number of measurements of the electrodynamic properties of NbN thin films have been

reported[20, 21,22]. These measurements, which were performed with a variety of techniques

6



overdifferent frequencyranges,are in reasonableagreementif films with similar resistivities
are compared. Empirically, the resistivity, critical temperature, and magnetic penetration
depth obey the BCSrelation[20]

x 100nm (1)

For example,for Tc = 16 K and/9 = 60/t_ cm, the calculated penetration depth A = 200 nm

agrees well with the measured value[23]. Below the gap frequency, the surface reactance of

a superconductor is inductive and is given by Xs = _#oA. On the other hand, the surface

resistance Rs is difficult to predict, and is often not well described by simple theory. For thin

film microstrip lines, which have dielectric thicknesses t < 2A, the surface resistance must

obey

)__ [¢>][R,, << qoa ° = 0.25fi 200nm
(9)

in order for the microstrip line to have low loss per wavelength. Here r/0 = 377 f_ and A0

is the free-space wavelength. For an SIS mixer, in which a microstrip circuit tunes out the

junction capacitance, the limit on the surface resistance is more restrictive:

A 2,-r A
- r/0-- (3)

R, << r/Oko Q cr

where r = Ig.vC is the time constant of the SIS junction and Q = _r = coR,_C. For Nb/AI-

oxide/Nb junctions with RxA = 20f_fm 2 and C_ = 80fFffm -2, and taking A = 200 nm,

this limit is R, << 0.15f_.

Kohjiro, Kiryu, and Shoji[22] found that the surface resistance R, of superconducting

NbN in the 200-1000 GHz band was strongly correlated with the normal-state resistivity:

high temperature, "epitaxially" grown films had a surface resistance that was an order of

magnitude lower than unheated "polycrystalline" films. In fact, their data indicate that the

surface resistance of the polycrystalline films rises very rapidly with frequency, and is quite

large at 1 THz, around R_ _ 0.5 ft. Unfortunately, SIS mixer devices are most often made

with the polycrystalline films, since high temperature film growth is usually not compatible

with high current density SIS tunnel junction fabrication. Also, it is difficult to obtain low

resistivity "epitaxial" growth on top of the SiO or SiO2 dielectric films used for the microstrip

transmission lines.

The performance of NbN SIS mixers have been measured bv several groups[24, 25, 26,

27]. Recently[26, 27], noise temperatures around 200 K have been obtained at 300 GHz.

SIS mixers using niobium devices achieve substantially lower noise, by at least a factor of

4. Although excess loss in the NbN tuning circuits may be responsible for some of this

discrepancy,, other factors such as optical losses, mixer design, and excess shot noise in

NbN junctions[28] may contribute as well. The performance of NbN SIS mixers appears to



deteriorate rapidly at higher frequencies[25], as would be expected given the large surface

resistance of polycrystalline NbN films. Measurements on a wider variety of devices would

be desirable, especially those fabricated with high quality films.
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Figure 5: Measurements of a twin-slot SIS mixer with a NbTiN ground plane, Nb/AiOx/Nb

junction, and a niobium wiring layer. Left: The direct-detection frequency response mea-

sured with our FTS. A magnetic penetration depth of ._ _ 175 nm is inferred for the NbTiN

ground plane. Right: a heterodyne hot/cold load response measurement at 638 GHz. The

uncorrected receiver noise temperature is ll0 I< (DSB), which is comparable to the best

results obtained at this frequency with all-niobium SIS mixers.

4.4 NbTiN Films and SIS Tuning Circuits

An interesting alternative to NbN is niobium titanium nitride. Nbz__TixN. In fact, su-

perconducting NbTiN films were produced thirty years ago in an early study of NbN film

deposition[29]. More recently, NbTiN films have been investigated for use in RF cavities for

particle accelerators[30]. This study showed that for x _< 0.4, the NbTiN films have critical

temperatures similar to NbN, or T_ _ 16 K, which is substantially higher than niobium

(T_ = 9.2 K). However, the normal-state resisivity of the films drops rapidly, as the tita-

nium fraction x is increased: NbTiN films grown on unheated substrates often have similar

(or lower) resistivity than NbN films grown on heated substrates. This might have been

expected, since the resistivity of TiN films is quite low[31]. Similar results were obtained

independently at .JPL during the process of characterizing and optimizing NbTiN film depo-

sition. In addition, tunnel junctions coupled to NbTiN microstrip resonators were fabricated

at JPL, which showed resonant features at bias voltages in excess of 2 mV. These measure-

ments indicated that the loss of NbTiN at 1 THz should be quite low, and encouraged us to

attempt SIS mixer measurements using this material.

8



4.5 SIS mixers with NbTiN ground planes

As a first step, we fabricated and tested twin-slot devices which used NbTiN films as the

ground plane, along with Nb/At-oxide/Nb junctions and a Nb wiring layer. We used our

existing lithography masks, which had been designed for niobium[10]. Because the magnetic

penetration depth of NbTiN is much larger than for niobium, the tuning inductance is larger,

and the resonant frequency of the circuit is reduced. In an attempt to compensate for this

effect, we selected a device nominally designed for .550 GHz but whose junction areas (1/am :a)

were much smaller than the nominal area for the design (1.7/am2). As shown in Figure .5,

the resonance frequency actually was shifted above .550 GHz, since the small junction areas

overcompensated for the increase in penetration depth. A very low value of t7.5 nm was

obtained for the penetration depth of NbTiN by matching the circuit simulations to the

FTS data. In addition, heterodyne measurements at 638 GHz, near the peak of the FTS

response, gave an uncorrected noise temperature of 110 K (DSB), which is certainly an

impressive result at this frequency. This low noise temperature indicates that the loss of the

NbTiN film must be quite low, although it is difficult to give a useful quantitative estimate

of the loss from the noise temperature alone.
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Figure 6: Measured and calculated frequency responses for SIS tuning circuits using NbTiN

ground planes and wiring layers, and NbTiN/MgO/NbTiN junctions. Left: The narrow

width of the resonance implies a limit of 0.03 f_ to the excess surface resistance at 500 GHz.

Right: The resonance width remains quite narrow at 800 GHz. At present, we do not fully

understand the origin of the secondary peak at 570 GHz.

4.6 FTS measurements of all-NbTiN devices

The positive results obtained with NbTiN ground planes encouraged us to fabricate and

measure devices which use NbTiN in the wiring layer as well as the ground plane. In

general, it is substantially more difficult to grow a high-quality film for the wiring layer,

since the substrate cannot be heated significantly without damaging the tunnel junctions,



and since the film is grown on top of the SiO film used for the junction passivation and
microstrip dielectric material. Figure 6 showssomerepresentativeresults. The evidence
that the lossof the NbTiN films is low in thesedevicescomesprimarily fi'om the shapeof
the measuredfrequencyresponseof SIS tuning circuits. Depending on the designand the
fabrication parameters,the tuning circuit may produce a high-Q resonance,whosewidth
providesdirect information on the lossof the NbTiN material. As is clearfrom Figures4 and
6, the NbTiN SIS circuits have much narrower resonancesthan the circuits with normal-
metal aluminum microstrip lines. Thus, wecanbequite certain that the lossesin the NbTiN
films are substantially lower than for aluminum films in the 500-800 GHz frequencyrange.
At ,500GHz, we estimate that any ezcess surface resistance in the NbTiN films cannot

exceed 0.03 f_, which is substantially below the surface resistance measured at this frequency

by Kohjiro et a1.[22] for unheated polycrystatline NbN films. At 800 GHz, our simulations

indicate that the excess surface resistance of the wiring layer is well below 0.1 fi if we assume

that the ground plane is essentially lossless.

Figure 6 also indicates some of the challenges we face. The resonances are often shifted

down from the design frequency due to variations in the NbTiN film deposition process.

Compared to our best films, a non-ideal film will generally have a lower critical temperature

along with a larger normal-state resistivity. According to equation 1, both of these effects

result in an increase in the penetration depth ,_. In fact, as shown in Fig. 6, the NbTiN

penetration depth can be quite large (350 nm) when the NbTiN deposition conditions are

not optimum. Additionally, in some cases the measured frequency responses show secondary

peaks at lower frequencies, which are not predicted by' our simulations. We suspect that these

may be related to modifications that were made in the design of the antenna coupling stubs

and the IF output line. Finally, the I-V curves of the devices often show series weak-link

behavior at high currents. These weak links are most likely produced in the region where the

NbTiN wiring layer crosses over the edges of the ground plane at the slot antenna. We have

some evidence from SIS heterodyne testing that these weak links are capable of absorbing RF

radiation from the antenna, which reduces the LO pump level and the heterodyne response,

but does not affect the width of the direct-detection resonance measured with the FTS.

4.7 SiS mixers with NbTiN/MgO/NbTiN and Nb/A1N/NbTiN

junctions

We have obtained good mixer results using SIS devices with all-NbTiN tuning circuits at

frequencies around 600 GHz (Fig. 7), with noise temperatures around 200 K (DSB). Devices

with three different junction types have been fabricated: Nb/A1-Oxide/Nb, Nb/A1N/NbTiN,

and NbTiN/MgO/NbTiN. Figure 7 shows typical pumped and unpumped I-V curves for

the junctions with A1N and MgO tunnel barriers. The Nb/AIN/NbTiN devices are especially

promising since they combine the sharp I-V behavior usually associated with niobium junc-

tions but have a substantially larger gap voltage, around 3.,5 mV, compared to 2.9 mV for

10
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Nb/AIN/NbTiN junctions.

niobium. This is particularly important for mixers operating near 1 THz, since the 0.6 mV

increase in gap voltage translates into a 1.2 mV increase in the available voltage bias range.

We hope to extend our mixer measurements to 800 GHz in the near future.

5 Conclusions

Our measurements indicate that NbTiN films will allow very low noise SIS mixers to be

developed for frequencies near 1 THz. At the minimum, we can expect a factor of two

improvement over existing 1 THz SIS mixers, by using high quality NbTiN ground planes

and aluminum wiring layers. This approach should yield noise temperatures around 400 K

(DSB)[3] at 1 THz. Low loss all-NbTiN devices may offer even better performance, perhaps

as low as 200 N (DSB).
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